

	1 1	- 1	1	1-				
Actua	л пу	arau	lic ro	ugn	ness	es. Pl	ug & Pray: w	hat about
locs		。		0				
1000	11 105565	F						
Sample	k₅(mm)	σ _{tot} (mm)		h _f (m)				
Validation	5.33	1.06	Dimension	New pipe	Breda 1 st pipe	Breda 2 nd pipe	The Hague 1 st pipe	The Hague 2 nd pipe
New pipe	0.54	0.07	(mm)	nen pipe	bread 1 pipe	bread 2 pipe	ine nagae i pipe	me nagae z pipe
Breda 1 st pipe								
invert	0.53	0.13	300/450	0.200	0.232	0.221	0.335	0.363
lateral	1.48	0.05	400/600	0.136	0.158	0.151	0.228	0.247
Breda 2 nd pipe	0.95	0.05	500/750	0.101	0.119	0.113	0.170	0.194
invert	0.54	0.03	500/750	0.101	0.118	0.112	0.170	0.184
lateral	0.94	0.04	700/1050	0.065	0.075	0.071	0.108	0.117
crown	1.1	0.03	1000/1500	0.040	0.047	0.044	0.067	0.073
The Hague 1 st			1200/1800	0.031	0.037	0.035	0.053	0.057
pipe	0.00	0.11	1000/2400	0.001	0.025	0.034	0.000	0.000
Invert	0.89	0.11	1600/2400	0.021	0.025	0.024	0.036	0.039
	1.5	0.05						
The Hague 2 nd	5.55	0.52						
pipe								
invert	0.76	0.09						
lateral	1.44	0.06						
crown	12.74	1.62						
Delft							Challeng	e the future

Monitoring increase in health risk due to a lack of maintenance (van Bijnen et al (2016 and (2017))Project starts in 2008 First inspection of the whole catchment: root intrusion on a moderate massive scale Install a lot of water level sensors, 3 rain gauges, discharge measuirng device in the • pumping station • During the project the maintenance department removed radio transmitters from the site (I guess we plugged but forgot to pray.....). • After 4 years the systems was cleaned out and we continued monitoring · For both situations a full detailed hydraulic model was calibrated · Based on time series taking into account all uncertainties for each manhole a frequency and duration estimate for flooding was made. Based on a model by de Man et al (2014) the health risk was determined. **T**UDelft

